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Abstract. V.M. Buchstaber, O.V. Karpov, and S.I. Tertychnyi initiated the
study of the rotation number integer quantization effect for a class of dy-
namical systems on a torus that includes dynamical systems modeling the
dynamics of the Josephson junction. Based on this approach, we study the
rotation number integer quantization effect in Artin braid groups and other
finitely generated groups acting on the circle. In this case, we find the follow-
ing manifestation of the quantization effect. Assume that a finitely generated
group G acts proximally on the circle by orientation-preserving homeomor-
phisms. Then for almost every path of any non-degenerate random walk on G,
the proportion of elements with integer rotation number in the initial section
of the path tends to 1 as the length of the section approaches infinity.

Introduction
We will discuss a new counterintuitive effect for groups acting on the circle. In
order to describe this effect, we introduce a series of definitions.

We begin with the concepts of translation and rotation numbers introduced
by Henri Poincaré [24]. Let R be the real line, Z be the set of integers, and S1

be the circle R/Z. The quotient map π : R→ S1 is the universal covering map. If
f : S1 → S1 is an orientation-preserving autohomeomorphism, F : R→ R is a lift
of f to R (that is, π ◦ F = f ◦ π), and x is a point in R, then the sequence

F (x)− x
1

,
F 2(x)− x

2
,

F 3(x)− x
3

, . . .

converges. The limit

τ(F ) = lim
k→∞

F k(x)− x
k

= lim
k→∞

F k(x)

k
(1)
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does not depend on x and is called the Poincaré translation number of F . The
value

ρ(f) = τ(F ) mod Z
is independent of the choice of F and is called the Poincaré rotation number of f .
The translation and rotation numbers are naturally defined for circle isotopies,
torus foliations, etc. It is often the case that the term “rotation number” is used
to refer to the translation number as well.

Another concept we use is that of proximal group actions. An action of a
group G on a space X is said to be proximal if, for any two points x and y in X,
there exists a sequence {gk} in G such that the sequences {gk(x)} and {gk(y)}
converge to one and the same point.

Theorem 1. Assume that a finitely generated group G acts proximally on the
circle by orientation-preserving homeomorphisms. Then for almost every path of
any non-degenerate random walk on G, the proportion of elements with integer
rotation number in the initial section of the path tends to 1 as the length of the
section approaches infinity.
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